A Reduced-Order Strategy for Solving Inverse Bayesian Shape Identification Problems in Physiological Flows
نویسندگان
چکیده
A reduced-order strategy based on the reduced basis (RB) method is developed for the efficient numerical solution of statistical inverse problems governed by PDEs in domains of varying shape. Usual discretization techniques are infeasible in this context, due to the prohibitive cost entailed by the repeated evaluation of PDEs and related output quantities of interest. A suitable reduced-order model is introduced to reduce computational costs and complexity. Furthermore, when dealing with inverse identification of shape features, a reduced shape representation allows to tackle the geometrical complexity. We address both challenges by considering a reduced framework built upon the RB method for parametrized PDEs and a parametric radial basis functions approach for shape representation. We present some results dealing with blood flows modelled by Navier-Stokes equations.
منابع مشابه
Inverse Identification of Circular Cavity in a 2D Object via Boundary Temperature Measurements Using Artificial Neural Network
In geometric inverse problems, it is assumed that some parts of domain boundaries are not accessible and geometric shape and dimensions of these parts cannot be measured directly. The aim of inverse geometry problems is to approximate the unknown boundary shape by conducting some experimental measurements on accessible surfaces. In the present paper, the artificial neural network is used to sol...
متن کاملBayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions
In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...
متن کاملInverse Problems in Imaging Systems and the General Bayesian Inversion Frawework
In this paper, first a great number of inverse problems which arise in instrumentation, in computer imaging systems and in computer vision are presented. Then a common general forward modeling for them is given and the corresponding inversion problem is presented. Then, after showing the inadequacy of the classical analytical and least square methods for these ill posed inverse problems, a Baye...
متن کاملReduced order methods for uncertainty quantification problems
This work provides a review on reduced order methods in solving uncertainty quantification problems. A quick introduction of the reduced order methods, including proper orthogonal decomposition and greedy reduced basis methods, are presented along with the essential components of general greedy algorithm, a posteriori error estimation and Offline-Online decomposition. More advanced reduced orde...
متن کاملData-driven model reduction for the Bayesian solution of inverse problems
One of the major challenges in the Bayesian solution of inverse problems governed by partial differential equations (PDEs) is the computational cost of repeatedly evaluating numerical PDE models, as required by Markov chain Monte Carlo (MCMC) methods for posterior sampling. This paper proposes a data-driven projection-based model reduction technique to reduce this computational cost. The propos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012